Copied to
clipboard

G = C2xC42:2C2order 64 = 26

Direct product of C2 and C42:2C2

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2xC42:2C2, C42:14C22, C22.22C24, C23.72C23, C24.14C22, (C2xC42):4C2, C4:C4:13C22, (C2xC4).53C23, C22.34(C4oD4), C22:C4.12C22, (C22xC4).60C22, (C2xC4:C4):17C2, C2.11(C2xC4oD4), (C2xC22:C4).12C2, SmallGroup(64,209)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2xC42:2C2
C1C2C22C23C22xC4C2xC42 — C2xC42:2C2
C1C22 — C2xC42:2C2
C1C23 — C2xC42:2C2
C1C22 — C2xC42:2C2

Generators and relations for C2xC42:2C2
 G = < a,b,c,d | a2=b4=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=bc2, dcd=b2c-1 >

Subgroups: 177 in 123 conjugacy classes, 81 normal (6 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2xC4, C2xC4, C23, C23, C23, C42, C22:C4, C4:C4, C22xC4, C24, C2xC42, C2xC22:C4, C2xC4:C4, C42:2C2, C2xC42:2C2
Quotients: C1, C2, C22, C23, C4oD4, C24, C42:2C2, C2xC4oD4, C2xC42:2C2

Character table of C2xC42:2C2

 class 12A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P4Q4R
 size 1111111144222222222222444444
ρ11111111111111111111111111111    trivial
ρ21-1111-1-1-1-11-111-1-11-11-111-11-11-1-11    linear of order 2
ρ311111111111-111-1-1-1-1-1-11-1-1-1-1-111    linear of order 2
ρ41-1111-1-1-1-11-1-11-11-11-11-111-11-11-11    linear of order 2
ρ511111111-1-1-1-1-1-11111-1-1-1-1-1-11111    linear of order 2
ρ61-1111-1-1-11-11-1-11-11-111-1-11-111-1-11    linear of order 2
ρ711111111-1-1-11-1-1-1-1-1-111-1111-1-111    linear of order 2
ρ81-1111-1-1-11-111-111-11-1-11-1-11-1-11-11    linear of order 2
ρ91-1111-1-1-1-1111-111-11-1-11-1-1-111-11-1    linear of order 2
ρ101111111111-11-1-1-1-1-1-111-11-1-111-1-1    linear of order 2
ρ111-1111-1-1-1-111-1-11-11-111-1-111-1-111-1    linear of order 2
ρ121111111111-1-1-1-11111-1-1-1-111-1-1-1-1    linear of order 2
ρ131-1111-1-1-11-1-1-11-11-11-11-1111-11-11-1    linear of order 2
ρ1411111111-1-11-111-1-1-1-1-1-11-11111-1-1    linear of order 2
ρ151-1111-1-1-11-1-111-1-11-11-111-1-11-111-1    linear of order 2
ρ1611111111-1-1111111111111-1-1-1-1-1-1    linear of order 2
ρ172-2-2-2222-2002i02i-2i000000-2i0000000    complex lifted from C4oD4
ρ1822-2-22-2-22002i0-2i-2i0000002i0000000    complex lifted from C4oD4
ρ1922-22-22-2-2000-2i000000-2i2i02i000000    complex lifted from C4oD4
ρ202-22-2-22-22000000-2i-2i2i2i0000000000    complex lifted from C4oD4
ρ212-22-2-22-220000002i2i-2i-2i0000000000    complex lifted from C4oD4
ρ222-2-22-2-2220002i000000-2i-2i02i000000    complex lifted from C4oD4
ρ2322-2-22-2-2200-2i02i2i000000-2i0000000    complex lifted from C4oD4
ρ242-2-2-2222-200-2i0-2i2i0000002i0000000    complex lifted from C4oD4
ρ2522-22-22-2-20002i0000002i-2i0-2i000000    complex lifted from C4oD4
ρ26222-2-2-22-2000000-2i2i2i-2i0000000000    complex lifted from C4oD4
ρ272-2-22-2-222000-2i0000002i2i0-2i000000    complex lifted from C4oD4
ρ28222-2-2-22-20000002i-2i-2i2i0000000000    complex lifted from C4oD4

Smallest permutation representation of C2xC42:2C2
On 32 points
Generators in S32
(1 25)(2 26)(3 27)(4 28)(5 16)(6 13)(7 14)(8 15)(9 19)(10 20)(11 17)(12 18)(21 31)(22 32)(23 29)(24 30)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 17 13 31)(2 18 14 32)(3 19 15 29)(4 20 16 30)(5 24 28 10)(6 21 25 11)(7 22 26 12)(8 23 27 9)
(1 27)(2 5)(3 25)(4 7)(6 15)(8 13)(9 29)(10 20)(11 31)(12 18)(14 28)(16 26)(17 21)(19 23)(22 32)(24 30)

G:=sub<Sym(32)| (1,25)(2,26)(3,27)(4,28)(5,16)(6,13)(7,14)(8,15)(9,19)(10,20)(11,17)(12,18)(21,31)(22,32)(23,29)(24,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,17,13,31)(2,18,14,32)(3,19,15,29)(4,20,16,30)(5,24,28,10)(6,21,25,11)(7,22,26,12)(8,23,27,9), (1,27)(2,5)(3,25)(4,7)(6,15)(8,13)(9,29)(10,20)(11,31)(12,18)(14,28)(16,26)(17,21)(19,23)(22,32)(24,30)>;

G:=Group( (1,25)(2,26)(3,27)(4,28)(5,16)(6,13)(7,14)(8,15)(9,19)(10,20)(11,17)(12,18)(21,31)(22,32)(23,29)(24,30), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,17,13,31)(2,18,14,32)(3,19,15,29)(4,20,16,30)(5,24,28,10)(6,21,25,11)(7,22,26,12)(8,23,27,9), (1,27)(2,5)(3,25)(4,7)(6,15)(8,13)(9,29)(10,20)(11,31)(12,18)(14,28)(16,26)(17,21)(19,23)(22,32)(24,30) );

G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,16),(6,13),(7,14),(8,15),(9,19),(10,20),(11,17),(12,18),(21,31),(22,32),(23,29),(24,30)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,17,13,31),(2,18,14,32),(3,19,15,29),(4,20,16,30),(5,24,28,10),(6,21,25,11),(7,22,26,12),(8,23,27,9)], [(1,27),(2,5),(3,25),(4,7),(6,15),(8,13),(9,29),(10,20),(11,31),(12,18),(14,28),(16,26),(17,21),(19,23),(22,32),(24,30)]])

C2xC42:2C2 is a maximal subgroup of
C42.372D4  C24.203C23  C23.255C24  C24.230C23  C24.286C23  C23.367C24  C23.368C24  C23.369C24  C24.295C23  C23.379C24  C23.380C24  C24.573C23  C23.396C24  C23.412C24  C23.419C24  C24.311C23  C24.326C23  C24.327C23  C24.331C23  C24.332C23  C42:23D4  C42:24D4  C42.184D4  C42:30D4  C42.192D4  C42:32D4  C42.198D4  C23.585C24  C23.589C24  C23.591C24  C23.595C24  C24.405C23  C23.602C24  C23.605C24  C24.413C23  C23.615C24  C23.616C24  C23.618C24  C23.621C24  C23.622C24  C24.418C23  C23.625C24  C23.627C24  C42:33D4  C42.200D4  C42:35D4  C42:43D4  C43:13C2  C22.110C25  C22.149C25  C22.153C25
C2xC42:2C2 is a maximal quotient of
C23.301C24  C23.380C24  C24.573C23  C24.577C23  C24.304C23  C23.395C24  C23.396C24  C23.397C24  C23.410C24  C23.411C24  C23.412C24  C23.413C24  C23.414C24  C23.543C24  C23.544C24  C23.545C24  C42:43D4  C43:13C2  C42:15Q8

Matrix representation of C2xC42:2C2 in GL5(F5)

40000
01000
00100
00010
00001
,
40000
00400
01000
00044
00001
,
10000
02000
00200
00033
00002
,
10000
04000
00100
00010
00034

G:=sub<GL(5,GF(5))| [4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[4,0,0,0,0,0,0,1,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,4,1],[1,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,3,0,0,0,0,3,2],[1,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1,3,0,0,0,0,4] >;

C2xC42:2C2 in GAP, Magma, Sage, TeX

C_2\times C_4^2\rtimes_2C_2
% in TeX

G:=Group("C2xC4^2:2C2");
// GroupNames label

G:=SmallGroup(64,209);
// by ID

G=gap.SmallGroup(64,209);
# by ID

G:=PCGroup([6,-2,2,2,2,-2,2,217,295,650,86]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b*c^2,d*c*d=b^2*c^-1>;
// generators/relations

Export

Character table of C2xC42:2C2 in TeX

׿
x
:
Z
F
o
wr
Q
<